arXiv:2506.11948v1 [cs.RO] 13 Jun 2025

SAIL: Faster-than-Demonstration Execution of

Imitation Learning Policies

Nadun Ranawaka Arachchige; Zhenyang Chen; Wonsuhk Jung,
Woo Chul Shin, Rohan Bansal, Pierre Barroso, Yu Hang He,
Yingyan Celine Lin, Benjamin Joffe, Shreyas Kousik; Danfei Xu®

Georgia Institute of Technology

Abstract: Offline Imitation Learning (IL) methods such as Behavior Cloning
are effective at acquiring complex robotic manipulation skills. However, exist-
ing IL-trained policies are confined to executing the task at the same speed as
shown in demonstration data. This limits the fask throughput of a robotic sys-
tem, a critical requirement for applications such as industrial automation. In
this paper, we introduce and formalize the novel problem of enabling faster-
than-demonstration execution of visuomotor policies and identify fundamental
challenges in robot dynamics and state-action distribution shifts. We instanti-
ate the key insights as SAIL (Speed Adaptation for Imitation Learning), a full-
stack system integrating four tightly-connected components: (1) a consistency-
preserving action inference algorithm for smooth motion at high speed, (2) high-
fidelity tracking of controller-invariant motion targets, (3) adaptive speed mod-
ulation that dynamically adjusts execution speed based on motion complexity,
and (4) action scheduling to handle real-world system latencies. Experiments
on 12 tasks across simulation and two real, distinct robot platforms show that
SAIL achieves up to a 4x speedup over demonstration speed in simulation and
up to 3.2x speedup in the real world. Additional detail is available at https:

//nadunranawakal.github.io/sail-policy

Keywords: Visuomotor Imitation, Robot Learning Systems, Manipulation

1 Introduction

Speed is essential for real-world robot learn-
ing applications. Recent offline imitation learn-
ing methods [1, 2] have excelled in complex
tasks like deformable object manipulation and
non-prehensile actions. However, their perfor-
mance heavily depends on human demonstra-
tions, which are typically slow, leading policies
to inherit sluggish motions. Therefore, this pa-
per addresses the question: How can we speed
up the execution of learned visuomotor policies
beyond demonstration speed? A key challenge
is that increased execution speeds alter robot
dynamics, introducing tracking errors and dy-
namic effects, which in turn shifts the observa-
tion distribution and further causes the policy to

*Equal contribution

wall-clock time

SAIL

Faster-than-demo
Policy Execution

)

Figure 1: The goal of our system, Speed-Adaptive
Imitation Learning (SAIL), is to speed up the ex-
ecution of a learned visuomotor policy such that
the robot can complete manipulation tasks faster
than in the original training demonstrations.

TEqual advising. All authors are with the Georgia Institute of Technology, Atlanta GA, USA.

Correspondence: nadun.ranawaka@gatech.edu

https://nadunranawaka1.github.io/sail-policy
https://nadunranawaka1.github.io/sail-policy
https://arxiv.org/abs/2506.11948v1

deviate from its prior distribution. Moreover, practical acceleration is constrained by inference la-
tency, sensor delays, and control bandwidth [3], making speed-up a full-stack challenge. As a result,
previous works typically assume consistent execution speeds during training and deployment.

We introduce Speed Adaptation for Imitation Learning (SAIL) as a full-stack framework to tackle
this problem (Fig. 1). Our key insight is that successfully accelerating policy execution requires
addressing both changing robot dynamics and the resulting state-action distribution shifts. At the
policy level, SAIL features: (1) an controller error-aware generative guidance algorithm that gener-
ates temporally-consistent action predictions at varying execution speed (Sec. 4.1); and (2) adaptive
speed modulation that dynamically adjusts execution speed based on task demands, slowing down
for precision and accelerating otherwise (Sec. 4.3). At the system level, SAIL: (1) trains the policy
model to predict controller-invariant action targets and tracks the targets with high-fidelity controller
to mitigate dynamic shifts (Sec. 4.2); and (2) adaptively schedules action execution to maintain real-
time control despite sensing and computation delays (Sec. 4.4).

This full-stack approach allows SAIL to achieve significantly higher fask throughput across a va-
riety of manipulation tasks. We validate our key technical insights and design choices through
experiments in simulation and demonstrate that SAIL achieves up to a 4x speedup over demon-
stration speed while maintaining high task success rates. We also show that, on two physical robot
systems with distinctive controller and dynamics, SAIL achieves up to a 3.2x speedup across 7
tasks involving challenges such as long task horizons, high precision, and bimanual coordination.

2 Related Work

Offline Imitation Learning. Offline imitation learning (LfD) methods are common ways to pro-
gram robots to learn behaviors from human demonstrations [4, 5, 6, 7]. Particularly, behavior cloning
(BC) [7] trains deep networks to map observations to actions from demonstration data. Recent works
in BC have introduced deep generative models [2, 1] to preserve the multimodal aspects of real-
world trajectories. However, as noted by prior works [2, 8], sampling from these learned trajectory
distributions can break temporal dependencies between consecutive prediction steps. This chal-
lenge is further exacerbated under higher execution speeds. Relevant to our goal of speed-adaptive
imitation are state-space frameworks like Dynamic Movement Primitives (DMPs) [9, 10, 11] and
Riemannian Motion Policies (RMPs) [12], which theoretically support temporal modulation of mo-
tion. Although a few approaches [13, 14, 15, 16] have incorporated such techniques into end-to-end
imitation learning, the field has more widely embraced simpler algorithms like Diffusion Policy [1].

Better-than-Demonstration Imitation Learning. There are multiple lines of work that aim to learn
better-than-expert policies [17, 18, 19]. For instance, T-REX [17] learns better-than-demonstration
policies by using a ranking-based reward function to evaluate unseen policy behaviors. Others [3, 20]
rely on subsequent self-supervised online learning with task-specific reward design [21], enabling
a 1.1-1.3x increase in execution speed at the expense of a loss in success rate. Furthermore, these
methods typically operate in an Inverse Reinforcement Learning [22, 23, 24] setting, requiring in-
teractive learning in the environment. In contrast, our focus is on the purely offline setting, where
we execute an offline-learned policy faster during runtime.

Recent works, such as SPHINX [25], have shown modest improvements in execution time and
speedup. Nevertheless, these gains are typically byproducts of their methods, whereas we explicitly
target faster execution as a primary objective.

System Integration for Imitation Learning. Recent works have expanded beyond pure algorithmic
innovations to develop full-stack systems for imitation learning [2, 26, 27, 28, 29],

with systems such as Mobile-ALOHA [26] and UMI [29] showing tremendous value in full-stack
optimization of low-level robot controllers with learning algorithms. However, none of these works
consider the problem of deliberately varying the execution speed between demonstration and policy
execution. Our core contribution lies in identifying key challenges for this new problem setting and
proposing a system that enables faster-than-demonstration policy execution.

3 Preliminaries, Challenges, and Problem Statement

Policy and Controller Hierarchy. We consider a robot control system structured in two levels:
(1) a high-level neural network policy 7(x,0) generating an action command a based on the current
robot state x and sensory observation o, and (2) a low-level robot controller X translating a into robot
joint torques u. To make our method generally applicable, we follow a common setup [1, 29, 30]
and assume that 7 outputs action trajectories a; = [xf,xfﬂr T ,x?+H_l], where H is the prediction
horizon and each x? includes the desired SE(3) end-effector pose and gripper command.

The controller K tracks this trajectory, calculating the torque u; for each desired pose xfl given the
current state x; and a fixed time interval §* between reference configurations: u, = K(x3,x;,8").
The controller X typically operates at a significantly higher frequency than the policy inference rate,
executing multiple control steps to track each xJ. Policies are usually deployed in a receding-horizon
fashion, executing a portion of the trajectory (H® < H steps) before replanning.

Offline Imitation Learning. We focus on offline imitation learning, where the policy 7 is learned
from a static dataset D = {(o,x,x3)}"_, collected via teleoperation. Each datum contains the sen-
sory observation o,, robot state x;, and the desired configuration x¢ commanded by the teleoperator,
sampled at a fixed time interval 8. The action supervision a; for training is formed by extracting
sequences of future desired configurations [xJ, - -- ,xf ' 57—1) from the demonstration. In this work, we
focus on Diffusion Policy (DP) [1] as our representative high-performance policy model. DP gener-
ates multi-step action trajectories via iterative denoising based on the current state and observation
(01,%), following a, = a,+1 — Y€ (01,1, an+1,n) +N(0,0621), where &g is the learned denoising
network. This action chunking [1, 2, 30] capability is advantageous for handling inference latency.
However, finite training data and the probabilistic nature of the policy can lead to temporal inconsis-
tencies between consecutively predicted trajectories [8], potentially causing jerky motion, especially
at high speeds. Furthermore, network inference introduces latency that must be managed for real-
time, high-speed control (Sec. 4.4). We note that all but one component in our system can apply to
other generative policy models, such as ACT [2], which we show in App. K.

Challenges and Problem Statement. Executing learned policies faster than demonstrated intro-
duces critical challenges beyond standard imitation learning. Faster execution drastically exacer-
bates distribution shift, as altered system dynamics and controller errors push the policy into un-
familiar Out-of-Distribution states where compounding errors [31] lead to failure. Simultaneously,
achieving speedup strains execution fidelity: low-level controllers may struggle to track fast tra-
jectories accurately, the assumption of consistent controller behavior between demonstration and
execution breaks down, and tasks inherently require slower speeds during high-precision phases.
Finally, real-world system latencies impose hard physical limits on control loop frequency, funda-
mentally constraining maximum achievable speed. Therefore, our core research problem is: Given
a policy 7 trained with time interval 8", how can we execute it using a faster, time-varying time
interval & = ¢;8" (with speedup factor ¢; < 1) to significantly increase successful task throughput
while overcoming the intertwined challenges of distribution shift, execution fidelity, and latency?

4 Speed Adaptation for Imitation Learning (SAIL)

4.1 Consistent Action Prediction via Error-Adaptive Guidance

Executing policies significantly faster than demonstrated fundamentally alters controller dynamics.
This leads to increased tracking error, pushing the robot state (o;,x;) Out-of-Distribution (OOD)
compared to its training experience captured in dataset D. This OOD shift poses a critical challenge
during receding horizon execution with visuomotor policies. When faced with OOD inputs resulting
from tracking errors in the previous execution step, the policy 7 can produce subsequent action
predictions do.g that are inconsistent with the just-executed actions aye.ye, yf. As shown in Fig. 3,
this prediction divergence between planning steps manifests as jerky or unstable robot motion.

Robot state x iniistepls
Diff. ;
Policy Co Cp *o* E:> g /
- ! o n

Inf. step i + 1 @ Action Scheduling
Diff. P e |
Policy P ¢ xX—> High-Gain
af x = | Tracking Control
b ——— |

tracking error e Closed-Loop Execution

Lo
predicted action chunk predicted speed factor ¢

f guidance weight w
[Error-Adaptive Guidance EAG) |«

Sensor Input (a) Policy Level (b) System Level

Figure 2: System Overview. SAIL operates at two levels: (a) Policy Level: Given raw sensor input,
the policy generates (1) temporally-consistent action predictions through error-adaptive guidance
(EAG) and (2) time-varying speedup factor. (b) System Level: The predicted actions are scheduled
for execution while accounting for sensing-inference delays, with outdated actions being discarded.
The actions are tracked with a high-fidelity controller at the specified time parametrization.

To mitigate this, one might consider enforcing temporal smoothness using Classifier-Free Guidance
(CFG) [32]. CFG encourages consistency by conditioning the prediction of the next action sequence
Aoy on the tail of the previously planned sequence a® = age.ye , e This is achieved by blending the
conditional score estimate &g(a',ac|o;,x;) with the unconditional one &g (af,0|o;,x;) using a guid-
ance weight w as

guided

£, (a',a%|o;,x;) = €g(a’, 0|01, x;) +w(eg(a',a|0s,x;) — 9 (a',0]0r,x;)). (D

However, naively applying CFG guidance (w > 0) during high-speed execution can be detrimental.
If significant tracking error occurred while executing a®, the input (x;,a®) to the conditional model
€g(+,a%os,x;) is effectively OOD. Conditioning strongly on this unreliable information provides
misleading guidance, potentially further exacerbating divergence. This challenge highlights the
limitations of approaches that either perform smoothing post-hoc after action generation [8, 2] or
implicitly assume consistent execution dynamics [1, 33] without directly addressing the OOD inputs
caused by controller shifts during the generation process itself.

Therefore, we propose Error-Adaptive Guid-
ance (EAG). We recognize that the utility of
conditioning via CFG depends on the quality
of the conditioning signal, which degrades with
increasing tracking error. We use the current
end-effector tracking error e = error(x4, xcvrent)
as an efficient proxy for this potential OOD
state (validated in Appendix H.3). Our algo- Figure .3: Divergence during rgceding horizon
rithm dynamically adjusts the CFG guidance execu}mn. We found that thg naive pohcy rollout
weight w: if tracking is accurate (e < p), we ap- occasionally produces inconsistent predictions be-

.) tween planning iterations, as shown in (a). For ex-
ply standard CFG guidance (w > 0) assuming P g . . @)
. AR : ample, the blue and green trajectories are two con-
reliable conditioning. Conversely, if the error

. e n et secutive trajectories that diverge in path. This can
is large (e > p), indicating the conditioning in- cayse a jerky executed trajectory (black dashed
put a© is likely unreliable due to the OOD state, line) during receding horizon control. EAG ad-
we disable guidance (w = 0) and rely solely dresses this problem by enforcing consistent con-
on the unconditional prediction £g(a',0|o;,x;). secutive predictions via conditional guidance a°,
This adaptive approach allows SAIL to enforce resulting in smoother execution.

temporal consistency when tracking is accurate,

while preserving robustness by avoiding potentially incorrect guidance caused by controller shift.
We illustrate how EAG is integrated with the overall system in Fig. 2 and detail its implementation
in Alg. 2.

(a) Naive Policy Rollout (b) Error-Adaptive Guidance (EAG)

inference
pred. i delay 6%
N —_—

guidance
condition a® g7

pred.i+1

-~ -~ Executed Trajectory

4.2 Reducing Controller Shift via Controller-invariant Action Target

While Sec. 4.1 adaptively handles Out-of-Distribution (OOD) states algorithmically, a primary
source of this distribution shift during high-speed execution is the changing behavior of the low-
level controller. Standard Imitation Learning often trains policies 7 to predict the commanded
poses x¢ from teleoperation (collected at interval 8”, often with a low-gain controller to ensure
smooth user experience) and uses the same teleoperation controller X'°!°°P for execution. However,
running JK'°1°°P at a faster interval § < §” alters its dynamics and tracking error profile, providing
OOD state inputs to the policy and hindering performance (Fig. 4, Middle).

To mitigate this at the system level, we first change what the policy predicts. Instead
of the commanded pose x¢, we train 7 to predict the reached pose x directly from the
demonstration data (Fig. 4, Right). The reached pose represents the robot’s actual trajec-
tory and is inherently achievable. Crucially, this target is largely invariant to the spe-
cific dynamics of the potentially compliant or noisy K'°®P used during data collection,
providing a more stable prediction target for the policy across different execution speeds.
Complementing this, we also change how the

Existing Methods Our Method
predicted action is executed. During high- pose R poss
speed deployment, we replace the original Demonstration S
Kteleop with a dedicated, high-fidelity tracking rose o iy
controller X° optimized for fast and accurate cre s Z P, pose
motion. This controller takes the policy’s pre- : : NP
dicted reached poses x; as targets and generates gETererradd e er el
torques u; = K°(x;,xU"eM §,) to follow them el ol il Kl sl

closely, even at the reduced interval ;. Using a Figure 4: Commanded vs Reached Pose. (Left)

high—perfqrmapce controller (like our high-gain Teleoperator commands x4 to the robot, and the

OSC detailed in App. D or potentially MPC) 1, reaches poses x. (Middle) Most policies are

to track the invariant reached pose target effec- {rained to predict x¢ and suffer from error profile

tively decouples policy execution from the vari- change during speeding up execution. (Right) We

able dynamics of the teleoperation controller, minimize this shift by training policies to predict

reducing controller-induced distribution shift. the reached poses x and track these with a high-
fidelity controller.

4.3 Adaptive-Speed Policy Execution

Executing all parts of a manipulation task at maximum speed can compromise success, especially
during precise interactions like grasping or alignment. SAIL automatically identifies such critical
actions and dynamically adjusts the instantaneous speedup factor ¢; based on the real-time context,
slowing down during critical actions and speeding up otherwise.

We identify critical actions using two complementary methods based on analyzing demonstration
data and runtime predictions. (1) Motion Complexity Analysis: Inspired by [34], we perform of-
fline analysis (e.g., DBSCAN clustering [35] on demonstration waypoints) to flag segments with
high geometric complexity. We then train the policy 7 to predict, alongside its action, whether the
current action corresponds to a phase that requires complex and careful motion. (2) Gripper Event
Detection: A simple heuristic to identify likely interaction phases at runtime is detecting changes
(opening/closing) in the predicted gripper state within the policy’s output action sequence ayiy-
Both of these methods yield a binary critical action flag k, € {0,1} for the current timestep ¢, where
k; = 1 indicates a critical action. We modulate the speedup factor between preset slow (¢*°V) and
fast () values: ¢; =k, - ¢SOV + (1—k) -t This allows SAIL to automatically slow down for
precision and speed up during simpler motions like reaching. We include more details in App. F.

4.4 Maintaining Real-Time Control at High Speed Under System Latency

Action scheduling. While adaptive modulation determines the desired execution speed ¢;, achieving
stable control at high average speeds requires explicitly handling inherent system latencies [29].
There exists an irreducible sensing-to-action delay 8% between requesting sensor data (at £°)

and receiving the computed action sequence from the policy (at #*). To maintain continuous robot
motion and prevent pauses, SAIL executes actions planned from the previous policy inference step
during this 8912 interval. Once the new action sequence dg.y arrives at t%, the system schedules
its execution using the adaptively determined interval & = c;§", transitioning from the old plan
by discarding any actions from the previous plan scheduled after r*. This process is illustrated in
Fig. E.2.

Upper bounding speedup. Crucially, the latency §9°'% imposes a fundamental physical limit on the
maximum achievable average speedup. To prevent “action exhaustion”’—running out of commands
before the next inference cycle completes—the actual execution interval § must be lower-bounded.
This lower bound, 8™ > §91& /(HP — H) (where HP is prediction horizon and H° is conditioning
length, derived in App. E), represents the minimum time required per step to sustain continuous
operation. Therefore, the adaptively chosen desired interval ¢;6" must respect this physical limit.
The final execution interval used by the controller at time 7 is § = max(c, - 8", 8™). This ensures
SAIL dynamically varies speed according to c¢;, but never exceeds the system’s physical capacity
due to latency, even at high speeds.

5 Evaluations

We test the following hypotheses: HI: Error-Aware Guidance (EAG) generates temporally-
consistent actions that improve policy performance at high speed, H2: All components of SAIL are
critical for enabling faster-than-demo execution while keeping a high success rate, and H3: SAIL is
generally deployable to physical robots on realistic tasks.

Metrics. Our primary evaluation metric is throughput-with-regret (TPRT), which rewards faster
successes while penalizing all failures equally, thus reflecting a policy’s capability to maintain suc-
cess rates at higher execution speeds. We further consider two suites of metrics. The first suite
focuses on task performance and efficiency, which includes task success rate (SR1), TPR, average
time for successful rollouts (ATR/), speedup-over-demo (SOD?). The second suite characterizes
the generated motion trajectories (e.g., smoothness), including consistency (CONJ), spectral arc
length [36] (SPARCY), log dimensionless jerk [36] (LDLIJ|), and weighted Euclidean distance [8]
(WEDJ). Detailed metric descriptions are in App. B.

5.1 Simulation Evaluation: SAIL Achieves High Task Throughput

Setup. We evaluate SAIL and a variety of baselines on standard manipulation benchmarks from
RoboMimic [37] and MimicGen [38]: Lift, Can, Square, Stack, and Mug Cleanup. More details on
the experiment setup are presented in App. C. Since few imitation learning methods directly address
execution speedup, we design several baselines for comparison, including AWE [34] which achieves
speedup as a side effect of its waypoint-based approach. Our baselines are: (1) DP [1]: Executes
actions at the original demonstration speed, serving as our primary baseline. (2) DP-Fast: Executes
Diffusion Policy actions at an accelerated fixed frequency using a low-gain controller, represent-
ing the naive approach to speedup. (3) Aggregated Actions: Operates in delta Cartesian Space
by aggregating consecutive actions in similar directions (detailed in App. I). (4) AWE [34]: Uses
automatically extracted waypoints to generate absolute action labels. (5) BID-Fast: the same as
DP-Fast but using BID [8] to enforce consistency between consecutive predictions during receding
horizon rollouts. See the architectures and parameter details in App. J.

EAG generates temporally-consistent motion at high speeds (H1).

To assess the effectiveness of EAG, we evaluate both trajectory smoothness and task performance.
Qualitative motion results and quantitative metric (SPARC) in Fig. 5 shows that EAG significantly
enhances motion consistency, which in turn improves task success rates during accelerated execu-
tion (SR). This is further confirmed by the ablation study SAIL(-C) in Table K.6, where removing
consistency-preserving trajectory generation reduces performance. Additionally, we observe that
consistent guidance is most effective when the conditioned future action falls within the uncondi-

[—= = Unconditional Action Distribution Action Condition 1
Selected Action Selected Action _— 0.7 - T

Success Rate

B == S
SN

—~ T

~ /‘ ‘ | (‘ " T s ==

\ | \ ‘ m - T

‘ J ‘ T 0.4
e — DP EAG EAG EAG DP EAG EAG EAG
—— p=001p=002p=004 p=0.01p =0.02p = 0.04
(a) Rollouts without EAG (b) Rollouts with EAG (c) SPARC and Success Rate for variable p

Figure 5: We show that EAG generates temporally-consistent motion, comparing sample rollouts
without EAG in (a) and rollouts with EAG in (b). We further illustrate how the success rate and
smoothness of trajectories are affected by the error threshold p in (c).

tional action distribution. As execution speed increases, misalignment between observations and
conditioned actions becomes more pronounced, correlating strongly with increased tracking error.
Detailed results presented in App. H.1 confirm that adaptive tracking error cutoff is crucial for ef-
fective conditional guidance.

SAIL achieves much higher throughput than baselines (HI). As seen in Table 1, SAIL can
achieve up to 3x throughput of baselines such as DP [1] for the Can and Stack tasks, without
sacrificing success rate. We attribute this to the combination of components, including the high-
gain controller, tracking reached poses, and adaptive speed modulation. Moreover, we conducted a
thorough study of how the throughput (TPR) changes as we vary ¢; in Fig. 6. We observe that SAIL
is able to smoothly improve the TPR as ¢; increases, with up to ¢; = 0.1 (10x speedup) showing its
robustness at least in an ideal simulated environment.

Component Ablation (H2). We present the

Lift Can
conclusion of ablation studies evaluating key g, | — sau /'t =
. . . AWE /_' /\/
components in SAIL, with full results in the op _ A) o2

-
»

Appendix. First, high-gain controllers, while
necessary for fast tracking, are sensitive to ref-
erence trajectory noise. As shown in Fig. G.5
in App. G.2, noisy references drastically re-
duce success rates for high-gain control, high- = Figure 6: TPR vs. Speedup Factor on Can and
lighting the need for smooth references gener- Lift Tasks. We show that as the speedup factor in-
ated by mechanisms like EAG. Second, imitat- creases, SAIL’s throughput-with-regret increases
ing reached poses is critical for high-speed exe- more than the AWE and DP baselines. In other
cution. Substituting commanded poses signifi- words, SAIL is able to accumulate more task suc-
cantly degrades performance, particularly when ~cesses more quickly while limiting task failures.
replaying demonstrations faster or with higher gains (details in App. G.1). This degradation is quan-
tified in Table K.6: using commanded poses instead of reached poses results in a 55% drop in success
rate for Square and reduces the average TPR by 0.08 across tasks compared to full SAIL. Finally,
adaptive speed modulation (AS) proves vital, especially for precision tasks. Comparing SAIL with
SAIL(-AS) (SAIL without adaptive speed) in Table K.6, we observe significantly lower success
rates without AS, particularly on Square and Mug (degradations up to 31%). This underscores the
importance of dynamically adjusting speed, especially for high-precision scenarios like Square.

-
o

/ / 0.20
LA~) 0.15
4 | [

. 0.10
10 05 033025 0.2 0.170.140.120.11 0.1 1.0 0.5 0.330.25 0.2 0.170.140.120.11 0.1
Speedup Factor ¢

o
[t

TPR (Throughput with Regret)

5.2 Real-World Evaluation: SAIL Achieves High Throughput on Hardware

Setup. We evaluate our method on two different robot platforms (Franka Emika Panda and Bimanual
URS) across 7 challenging manipulation tasks (shown in Fig. 7), including long task horizon, high-
precision steps, and bimanual coordination (detail in App. D.3).

Both robot platforms run high-fidelity tracking controllers (detail in App. D). We compare SAIL
(5 x speedup) with DP-Fast (5x speedup). Each method is evaluated for 10 rollouts per task.

Table 1: Results of evaluation in simulation (Robomimic [37] and MimicGen [38])

Lift Can Square Stack Mug
Method |[SRT TPR{ ATR| SOD{|SRT TPRT ATR|SOD}|SRT TPR{ ATR| SOD{|SRT TPR?} ATR|SOD}[SRT TPR{ ATR] SODf
DP [1] 1.00 046 2.23 1.08 [0.97 0.18 5.52 1.05 |0.83 0.10 7.56 0.99 [1.00 0.19 5.50 0.98 |0.68 0.03 17.44 0.97
DP-Fast 0.95 1.02 1.52 1.59 |0.87 0.37 2.34 248 |0.55 0.15 3.42 2.20 (098 0.44 237 228 |0.56 0.05 9.67 1.74
AWE [34] [1.00 0.44 2.35 1.02 {0.96 0.17 5.80 1.00 [0.83 0.10 8.13 0.93 |0.98 0.11 9.01 0.60 [0.75 0.02 28.79 0.59
Agg. Act. 091 0.52 1.78 1.37 |0.82 0.16 4.77 1.22 [0.29 0.03 4.81 1.57 |0.82 0.17 6.18 0.87 |0.59 0.03 15.86 1.06
BID-Fast [8]{0.86 0.91 0.97 2.50 [0.79 0.34 2.39 2.34 [0.49 0.12 345 2.18 0.99 047 2.61 2.07 [0.62 0.06 8.71 1.94
SAIL(Ours){1.00 1.68 0.61 3.98 [0.92 0.51 1.81 3.20 [0.86 0.13 641 1.18 |0.98 0.66 1.56 3.47 |0.72 0.08 8.09 2.09

Table 2: Real-World Evaluation
Stacking Cups Wiping Board Baking Folding Cloth

Method |SRT TPRt ATR| SODT [SRT TPRt ATR| SODf [SRT TPRT ATR| SODt [SRT TPRT ATR| SOD?t
DP-Fast|0.10 -2.28 14.00 1.85 (090 348 1454 234 |090 3.06 16.15 226 |0.10 -2.28 14.60 2.08
SAIL [040 -0.12 1471 176 (070 3.18 1044 326 |(1.00 420 1439 254 |0.30 -0.78 13.68 2.22

Plate Fruits Pack Chicken Bimanual Serve
Method | SRT TPRt ATR| SODt |SRf TPRt ATR| SODt |SRf TPRT ATR| SOD?t
DP-Fast | 0.60 2.22 13.74 1.66 0.40 0.51 17.33 1.25 0.40 1.00 12.01 1.43
SAIL |0.80 5.46 8.53 2.67 0.90 5.22 9.40 2.30 0.70 5.40 7.19 2.39

Results: SAIL overcomes DP-Fast failure modes (H3).

Across differences in control sys-

tems, robot dynamics, and tasks, SAIL generally improves task throughput. As shown in Ta-
ble 2, throughput-with-regret (TPR) and SOD both improved on 6/7 challenging tasks, demon-
strating SAIL’s consistent speed advantage over the baseline sped-up diffusion policy. Qualitatively
(Sec. 5.2), SAIL overcomes common DP failure modes during high-speed execution. DP often
pauses due to action depletion when inference lags; SAIL maintains constant motion via smooth ac-
tion scheduling. High speeds exacerbate imprecise grasping for DP, whereas SAIL’s adaptive speed
modulation slows critical phases, enhancing success rates in mid-to-high precision tasks such as plat-
ing fruits, packing chicken, and cup stacking. Low-fidelity motion tracking frequently causes DP
failures, particularly for actions requiring precise localization like cloth folding and baking; SAIL
substantially reduces tracking errors compared to the original teleoperation controller (X'°1°P), thus
improving performance in precision-critical stages. Furthermore, DP’s inconsistent action predic-
tions result in jerky motions, posing considerable challenges at increased speeds. This is partic-
ularly evident in the bimanual serving task, where SAIL achieves smoother trajectories, yielding
5.4x higher throughput and approximately 1.8 x greater success rates. Finally, we note that SAIL
performs slightly worse than DP in the wiping task. We hypothesize that this is due to the high-gain
tracking controller’s inability to adjust to the new robot-object dynamics (sustained contact during
wiping) at a higher speed. We provide additional discussion in the Limitation section.

6 Conclusion

We formalized and identified challenges in the novel problem of faster-than-demonstration exe-
cution of visuomotor policies. Our framework, SAIL, tackles the full-stack problem by combining
Error-Adaptive Guidance, controller-invariant targets, adaptive speed modulation, and latency-aware
scheduling. Experiments show SAIL achieves up to 4 x speedup in simulation and 3.2 x speedup in
real-world while maintaining high success rates across diverse tasks.

7 Limitations

Through formalizing and proposing a solution for the novel problem of faster-than-demonstration
execution, we have identified several fundamental challenges that open up new research directions
for the robotics community. First, SAIL focuses on addressing the observation-action drift as a re-
sult of controller dynamics shift and does not explicitly tackle the dynamics shift of robot-object
interaction. This manifests most clearly in manipulation tasks where object-robot dynamics be-

Fi

gure 7: Real-world task setup with two robot platforms (Franka and URS).

d!

Figure 8: Commonly-seen failure modes from real-world evaluation. Speeding up policy execu-
tion poses challenges unseen in normal speed execution, which include imprecise grasping (grasping
two cups in 1, missing eraser in 5, and missing chicken in 7), low-fidelity tracking (colliding with
other cups in 2 and 3, missing handle in 4, missing collar in 6), jerky motion (fruit drops in 8). SAIL
effectively reduces such failures under speeding-up execution, leading to higher task throughput.

come significantly more complex at higher speeds—for instance, we observed that in the simulated
Can task, increased execution speed can cause the robot to inadvertently throw the can out of the
workspace due to increased momentum. Relatedly, the finite-data nature of offline imitation learning
makes it vulnerable to distributional shift that cannot be addressed solely by improving the policy
learning algorithms. Future research could address this by developing methods to incorporate ex-
plicit dynamics modeling into policies, either by leveraging known dynamics models or learning
from simulation-based data during training.

As the field continues to advance learning-based manipulation in the wild, we believe a key focus
should be to enable the robot learning system to co-optimize the low-level control and the anticipated
dynamic effects of the predicted actions at different execution speeds. We hope this work can open
new pathways and facilitate wider adoption of learned policies in real industrial applications.

Acknowledgments

The authors would like to acknowledge the State of Georgia and the Agricultural Technology Re-
search Program at Georgia Tech for supporting the work described in this paper. We also acknowl-
edge funding from the AI Manufacturing Pilot Facility project under Georgia Artificial Intelligence
in Manufacturing (Georgia AIM) from the U.S. Department of Commerce Economic Develop-
ment Administration, Award 04-79-07808, NSF CCF program, Award 2211815, and NSF Award
1937592.

References

[1] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion Policy:
Visuomotor Policy Learning via Action Diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[2] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[3] S. Sakaino, K. Fujimoto, Y. Saigusa, and T. Tsuji. Imitation learning for variable speed contact
motion for operation up to control bandwidth. IEEE Open Journal of the Industrial Electronics
Society, 3:116-127, 2022.

[4] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[5] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469—483, 2009.

[6] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

[7] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances in robot

learning from demonstration. Annual review of control, robotics, and autonomous systems, 3
(1):297-330, 2020.

[8] Y. Liu, J. I. Hamid, A. Xie, Y. Lee, M. Du, and C. Finn. Bidirectional Decoding: Improving
Action Chunking via Closed-Loop Resampling. arXiv preprint arXiv:2408.17355, 2024.

[9] A.J. Ijspeort, J. Nakanishi, and S. Schaal. Learning rhythmic movements by demonstration
using nonlinear oscillators. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 1, pages 958-963, 2002. doi:10.1109/IRDS.2002.1041514.

[10] A. Ijspeert, J. Nakanishi, and S. Schaal. Trajectory formation for imitation with nonlinear
dynamical systems. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat.
No.0ICH37180), volume 2, pages 752757 vol.2, 2001. doi:10.1109/IROS.2001.976259.

[11] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel. Dynamic movement primi-
tives in robotics: A tutorial survey. CoRR, abs/2102.03861, 2021. URL https://arxiv.
org/abs/2102.03861.

[12] N. D. Ratliff, J. Issac, and D. Kappler. Riemannian motion policies. CoRR, abs/1801.02854,
2018. URL http://arxiv.org/abs/1801.02854.

[13] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end
sensorimotor learning. Advances in Neural Information Processing Systems, 33:5058-5069,
2020.

10

https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://ieeexplore.ieee.org/document/9707856
https://ieeexplore.ieee.org/document/9707856
https://proceedings.neurips.cc/paper/1988/hash/812b4ba287f5ee0bc9d43bbf5bbe87fb-Abstract.html
https://www.sciencedirect.com/science/article/abs/pii/S0921889008001772
https://www.sciencedirect.com/science/article/abs/pii/S0921889008001772
https://dl.acm.org/doi/10.1145/3054912
https://dl.acm.org/doi/10.1145/3054912
https://www.annualreviews.org/content/journals/10.1146/annurev-control-100819-063206
https://www.annualreviews.org/content/journals/10.1146/annurev-control-100819-063206
https://arxiv.org/abs/2408.17355
https://arxiv.org/abs/2408.17355
http://dx.doi.org/10.1109/IRDS.2002.1041514
http://dx.doi.org/10.1109/IROS.2001.976259
https://arxiv.org/abs/2102.03861
https://arxiv.org/abs/2102.03861
http://arxiv.org/abs/1801.02854

[14] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Control, planning, learning, and imitation
with dynamic movement primitives. In Workshop on Bilateral Paradigms on Humans and
Humanoids: IEEE International Conference on Intelligent Robots and Systems (IROS 2003),
pages 1-21, 2003.

[15] M. Xie, A. Handa, S. Tyree, D. Fox, H. Ravichandar, N. D. Ratliff, and K. V. Wyk. Neu-
ral geometric fabrics: Efficiently learning high-dimensional policies from demonstration. In
6th Annual Conference on Robot Learning, 2022. URL https://openreview.net/
forum?id=GTyBkg36t jx.

[16] S. Bahl, A. Gupta, and D. Pathak. Hierarchical neural dynamic policies. @ CoRR,
abs/2107.05627, 2021. URL https://arxiv.org/abs/2107.05627.

[17] D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from observations. In International conference on
machine learning, pages 783—792. PMLR, 2019.

[18] D. S. Brown, W. Goo, and S. Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on robot learning, pages 330-359.
PMLR, 2020.

[19] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and M. Sugiyama. Imitation learning
from imperfect demonstration. In International Conference on Machine Learning, pages 6818—
6827. PMLR, 2019.

[20] Y. Saigusa, A. Sasagawa, S. Sakaino, and T. Tsuji. Imitation learning for variable speed mo-
tion generation over multiple actions. In IECON 2021—47th Annual Conference of the IEEE
Industrial Electronics Society, pages 1-6. IEEE, 2021.

[21] Y. Saigusa, S. Sakaino, and T. Tsuji. Imitation learning for nonprehensile manipulation through
self-supervised learning considering motion speed. IEEE Access, 10:68291-68306, 2022.

[22] A.Y. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[23] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Pro-
ceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[24] B.D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforce-
ment learning. In Aaai, volume 8, pages 1433-1438. Chicago, IL, USA, 2008.

[25] P. Sundaresan, H. Hu, Q. Vuong, J. Bohg, and D. Sadigh. What’s the Move? Hybrid Imitation
Learning via Salient Points. arXiv preprint arXiv:2412.05426, 2024.

[26] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[27] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: Teleoperation with immer-
sive active visual feedback. arXiv preprint arXiv:2407.01512, 2024.

[28] A.lyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024.

[29] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Uni-
versal Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots. In
Proceedings of Robotics: Science and Systems (RSS), 2024.

[30] S.Liu, L. Wu, B. Li, H. Tan, H. Chen, Z. Wang, K. Xu, H. Su, and J. Zhu. Rdt-1b: a diffusion
foundation model for bimanual manipulation. arXiv preprint arXiv:2410.07864, 2024.

11

https://openreview.net/forum?id=GTyBkq36tjx
https://openreview.net/forum?id=GTyBkq36tjx
https://arxiv.org/abs/2107.05627
https://proceedings.mlr.press/v97/brown19a.html
https://proceedings.mlr.press/v97/brown19a.html
https://arxiv.org/abs/1907.03976
https://arxiv.org/abs/1907.03976
https://proceedings.mlr.press/v97/wu19a.html
https://proceedings.mlr.press/v97/wu19a.html
https://ieeexplore.ieee.org/document/9589303
https://ieeexplore.ieee.org/document/9589303
https://ieeexplore.ieee.org/document/9804696
https://ieeexplore.ieee.org/document/9804696
https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
https://cdn.aaai.org/AAAI/2008/AAAI08-227.pdf
https://cdn.aaai.org/AAAI/2008/AAAI08-227.pdf
https://arxiv.org/abs/2412.05426
https://arxiv.org/abs/2412.05426
https://roboticsconference.org/2024/program/papers/45/
https://roboticsconference.org/2024/program/papers/45/

[31] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627-635. IMLR Workshop and Conference Pro-
ceedings, 2011.

[32] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[33] S. H. Hgeg, Y. Du, and O. Egeland. Streaming diffusion policy: Fast policy synthesis with
variable noise diffusion models. arXiv preprint arXiv:2406.04806, 2024.

[34] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn. Waypoint-Based Imitation Learning for Robotic
Manipulation. In Conference on Robot Learning, pages 2195-2209. PMLR, 2023.

[35] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. KDD’96, page 226-231. AAAI Press, 1996.

[36] Balasubramanian, Sivakumar and Melendez-Calderon, Alejandro and Roby-Brami, Agnes and
Burdet, Etienne. On the analysis of movement smoothness. Journal of NeuroEngineering and
Rehabilitation, 12(1):112, 2015. doi:10.1186/s12984-015-0090-9. URL https://doi.
org/10.1186/s12984-015-0090-9.

[37] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martin-Martin. What Matters in Learning from Offline Human Demonstrations
for Robot Manipulation. In 5th Annual Conference on Robot Learning, 2021.

[38] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox. Mim-
icGen: A Data Generation System for Scalable Robot Learning using Human Demonstrations.
In 7th Annual Conference on Robot Learning, 2023.

[39] S. Balasubramanian, A. Melendez-Calderon, and E. Burdet. A robust and sensitive metric
for quantifying movement smoothness. IEEE Transactions on Biomedical Engineering, 59(8):
2126-2136, 2012. doi:10.1109/TBME.2011.2179545.

[40] Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany, and Y. Zhu. ro-
bosuite: A Modular Simulation Framework and Benchmark for Robot Learning. In arXiv
preprint arXiv:2009.12293, 2020.

[41] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026—
5033. IEEE, 2012.

[42] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu. VIOLA: Imitation Learning for Vision-Based
Manipulation with Object Proposal Priors. arXiv preprint arXiv:2210.11339, 2022. doi:
10.48550/arXiv.2210.11339.

[43] S. Scherzinger, A. Roennau, and R. Dillmann. Forward dynamics compliance control (fdcc):
A new approach to cartesian compliance for robotic manipulators. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4568—4575, 2017. doi:10.1109/
IROS.2017.8206325.

[44] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273-1286, 2021.

[45] D. W. Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley
& Sons, 2015.

[46] D. O. Loftsgaarden and C. P. Quesenberry. A nonparametric estimate of a multivariate density
function. The Annals of Mathematical Statistics, 36(3):1049-1051, 1965.

[47] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723-773,2012.

12

https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v229/shi23b.html
https://proceedings.mlr.press/v229/shi23b.html
https://dl.acm.org/doi/10.5555/3001460.3001507
https://dl.acm.org/doi/10.5555/3001460.3001507
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0090-9
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0090-9
http://dx.doi.org/10.1186/s12984-015-0090-9
https://doi.org/10.1186/s12984-015-0090-9
https://doi.org/10.1186/s12984-015-0090-9
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2310.17596
https://arxiv.org/abs/2310.17596
https://ieeexplore.ieee.org/document/6104119
https://ieeexplore.ieee.org/document/6104119
http://dx.doi.org/10.1109/TBME.2011.2179545
https://arxiv.org/abs/2009.12293
https://arxiv.org/abs/2009.12293
https://ieeexplore.ieee.org/document/6386109
https://arxiv.org/abs/2210.11339
https://arxiv.org/abs/2210.11339
http://dx.doi.org/10.48550/arXiv.2210.11339
http://dx.doi.org/10.48550/arXiv.2210.11339
http://dx.doi.org/10.1109/IROS.2017.8206325
http://dx.doi.org/10.1109/IROS.2017.8206325

A Table of Contents

The Appendix contains the following content:

Formulas and explanation of evaluation metrics (Appendix B): this section explains the
different metrics used in the experiments for this paper.

Simulation experiment setup (Appendix C): this section describes the task suite and sim-
ulator used for the simulation experiments, as well as specific changes we made to enable
speedup.

Real world setup and tasks (Appendix D): we detail our hardware and data collection
setup and provide descriptions of the different tasks we used to evaluate SAIL.

Derivation of Action Interval (Appendix E): we derive a theoretical bound for the speedup
factor ¢, that still maintains continuous execution without pauses due to inference.

Modulating speed (Appendix F): this section describes two different methods of detecting
critical actions that allow SAIL to modulate the speedup factor ¢ during various stages of a
task.

Experiments for justifying components of SAIL (Appendix G): in this section we present
mini experiments that give insights into different components of SAIL and how they affect
performance.

Error adaptive guidance experiments (Appendix H): we present a deep dive into EAG
and the importance of varying guidance based on tracking error.

Aggregating actions algorithm (Appendix I): this section includes the implementation of
the Aggregated Actions baseline in Table 1.

Policy and controller parameters (Appendix J): this section lists out the different hyper-
parameters used for the policies and robot controllers.

Ablation and Action Chunking with Transformers results (Appendix K) : we perform a
detailed ablation of the different components of SAIL and present results using a different
policy algorithm - ACT [2].

B Evaluation Metrics

In this section, we describe the metrics that we used for evaluation in detail.

1.

2.

SR (higher is better): The success rate is the number of successfully-completed tasks di-
vided by the total number of trials.

TPR (higher is better): We propose throughput-with-regret to reward faster successes while
penalizing all failures equally:

TPRzi}ﬁ}((;-Sl)—<tmlax'(1_5i)>v))

where #; is the duration (i.e., total simulated clock time) of rollout i, #™* is the maximum
amount of time allowed per trial, and S; is the success of rollout i. That is, S; = 1 if trial i
was successful and 0 otherwise. We halt all trials if they have not succeeded before r™?X,
and declare such trials as failures.

. ATR (lower is better): We record the average time for successful rollouts, where we com-

pute the average time in seconds only for the successful rollouts out of all trials.

. SOD (higher is better): We report the speedup-over-demo, which is the average length

of a demo divided by ATR. SOD indicates how much one speeds up the execution of the
imitation learning policy compared to the training demonstration.

13

5. CON (lower is better): To evaluate our CFG and action conditioning approach, we quantify
the consistency between overlapping parts of consecutive action sequences, we measure the
change in actions at the transition point, specifically, CON = dyr — aye , yr, following the
notation of Sec. 4.1.

6. SPARC (higher is better): SPARC (linear and angular spectral arc length) is a smoothness
metric that evaluates the arc length of the Fourier magnitude spectrum of a trajectory’s
speed profile [36]. It is an extended version of Spectral Arc Length (SAL) [39].

In SAL, the magnitude spectrum V(w) of the Fourier transform of a speed profile v, is
normalized by its DC value V(0):

V(io)= ——+ 3)

SAL integrates the arc length of V(@) over frequencies from 0 up to a cutoff frequency @,:

SALéf/OwC Ké)ﬁ(‘?ﬁ?)jiw &)

where the first term in the square root is used for frequency normalization, normalizing the
arc length with respect to @.. SPARC refines SAL by adaptively selecting @, based on a
chosen amplitude threshold V and an upper limit @™** as follows:

a)cémin{a);“ax,min{a)f/(r) <V ¥r> w}} 5)

We compute SPARC for a given speed trajectory in the following manner. First, we pad
the trajectory with zeros (K = 4) to increase the frequency resolution to accurately estimate
the length of the arc. Next, we normalize the magnitude spectrum and apply an upper limit
o™ = 20 and an amplitude threshold V = 0.05. We then compute the arc length of the
normalized spectrum by summing the Euclidean distance between successive frequency-
domain points. Finally, we multiply this sum by —1 to obtain larger values for smoother
trajectories.

7. LDLJ (lower is better): Log Dimensionless Jerk (LDLJ) is a smoothness metric that eval-
uates how quickly and drastically the motion accelerates or decelerates based on the third
derivative of position, jerk.

LDLJ can be written as [36]:

2

d2
" ar

A

(tz—tl)s)
), ©

where] and 1, are the start and end times of the movement, v; is the speed at time ¢, and
VP 2 max, i o1 Vi

In our work, we calculate LDLJ by setting vP**X as the peak speed within the trajectory.
The speed v(¢) is computed as the difference between the positions of successive points.
After estimating the speed, we apply finite differences to approximate its second derivative
with respect to time. The squared second derivative is then integrated over the movement

duration, scaled by (QVQJ, and the negative natural logarithm is applied to obtain the final

peak
LDLJ value.

8. WED (lower is better): We calculate the Weighted Euclidean Distance, a metric that is
used in [8] to quantify the consistency between overlapping action segments.

14

C Simulation Experiment Details

C.1 Robot Control and Dynamics Considerations

We control robots in simulation using an OSC controller that takes absolute pose commands, except
for the aggregated actions baseline, which uses delta pose commands. Additionally, to ensure that
robot torque limits are not a bottleneck to speed up, we removed the joint torque limits of the Franka
Emika Panda robot in Robosuite. For some of our baselines, removing torque limits resulted in
worse performance. In these cases, we report their performance with torque limits. In Table J.4, we
list the optimal controller and the upper bound of ¢ in adaptive speed modulation that SAIL uses in
the simulated tasks.

C.2 Simulator and Data

We use Robosuite [40] to simulate robots and their environments. Robosuite is built on Mujoco [41]
and by default simulates two milliseconds (0.002 s) of real-world time every time the simulator is
stepped forward. In our problem setting, we consider the action interval § as the number of simu-
lation steps allowed for a robot controller to execute a given action. Speeding up policy execution
is thus to reduce the total number of simulation step taken to finish a task. The teleoperation data is
collected at 6 = 0.05 s (20 Hz).

For our simulation benchmark, we use three tasks from the Robomimic [37] suite of tasks and two
tasks from MimicGen [38]. For the Robomimic tasks, we train a separate policy for each task on
200 human demonstrations. For MimicGen tasks, we use 500 machine-generated demonstrations
for each task.

The diffusion policy is trained with prediction horizon H = 32. In a receding-horizon manner, we
execute 8 of the predicted actions before the next inference, and 4 more actions while inference is
running to simulate sensing-inference delay.

C.3 Compute

We run all sim experiments on a compute cluster. Each experiment uses a single A40 GPU, 8 CPU
cores and 64GB of RAM.

D Real-World Evaluation Setup

In this section, we explain the real robot setup and data collection pipeline used in the paper.

D.1 Franka Robot

We have a four-level control hierarchy for the Franka robot. In the first level, action chunks from
policy inference are retrieved in a variable frequency and velocity approximation is performed, as
introduced in Sec. 3.

Second, actions in each chunk are interpolated and scheduled by a computer (Intel NUC) controlling
the robot at 100Hz.

Third, we use our OSC controller for the Franka, which is based on the Deoxys controller introduced
in [42]. Given the desired 6D pose, and velocity, we calculate the pose error e, and velocity error
e,. The computed torque 7 sent to robot joints is

t=J"M(Kye,+K,e,), (7

where J is the Jacobian of the robot, M is the mass matrix represented in end-effector space. The
velocity target is computed by fitting and differentiated a spline over the predicted action trajectory.

Fourth and finally, we leverage the torque control API from libfranka and calculate torque com-
mands, which are sent to the on-board Franka controller at S00Hz.

15

Requested

Timestamp
O !
3 W U . o U, W, >
E g
..'.'""A:I.Default
‘ Observation

Synchronized

Observation‘_“...,t '

4] &
o Lo
= Ly
© N M ‘ M) M) ’
o S N A 4B U/ |/
S SRR
= i g

Aligned

Timestamp

Figure D.1: Timestamps alignment. For each modality, we identify the nearest observation (filled
circles) to construct the default observation (red dotted outline) at the requested timestamp (black
dashed line). Among these nearest timestamps, we determine the farthest one (purple dashed line).
We then align the other modalities (filled circles) to this timestamp to obtain the synchronized ob-
servation (red dotted outline).

Our teleoperation system uses a Meta Quest VR headset to control the commanded pose of the
robot end effector. To record an initial pose during the demonstration collection, users press the VR
controller grip button. While the button is held, the change in the VR controller pose relative to
the initial pose is transformed into the robot coordinate frame and used to adjust the commanded
pose. Releasing the grip button pauses the teleoperation, allowing users to reposition their hand
comfortably before resuming the task. Demonstrations are recorded at 20Hz. We collect the robot’s
reached poses and commanded poses at 20Hz. Images are attained from the Kinect camera which
is collected at 30Hz, while Zed camera is collected at 60Hz. To handle this mismatch, we cache the
most recent 100 messages per modality and perform an observation alignment process. Specifically,
upon receiving a request for observation at time ¢, we find the closest timestamps in each cache, then
among these we identify the one farthest from ¢, and realign all modalities to that time to ensure
consistency (see Fig. D.1).

We collect 50 demonstrations for each task.

D.2 URS Robot

We designed a modular control and data collection framework for URS robots equipped with Carte-
sian controllers [43] based on ROS 23.

Similar to the Franka setup, demonstrations are collected through a teleoperation loop running at
20Hz, while our observation modalities operate at different frequencies: the on-wrist Intel RealSense
D405 and static D435 scene cameras run at 90Hz, the robot controllers operate at 125Hz, and the
VR device at 72Hz.

By scheduling actions our system can execute the learned policies at configurable rates. By default,
we match the 20Hz demonstration rate, but the frequency can be dynamically adjusted based on
model predictions to speed up or slow down motions. Our URS setup can be used to perform biman-
ual tasks with a single operator/policy controlling both arms. Each arm’s speed can be individually

3https://docs.ros.org/en/jazzy/index.html

16

https://docs.ros.org/en/jazzy/index.html

controlled as needed to complete the task. For the tasks tested on the URS robots, we varied the
number of demos according to the task length and difficulty.

D.3 Task Descriptions

* Stacking Cups. This task mimics speed stacking, wherein humans attempt to stack cups
in predetermined sequences as quickly as possible. We collect human teleoperation demos
to stack 3 cups into a pyramid shape for this task. The repetitive grasping, placing, and
movement pose challenges in balancing speeding up policy and manipulation accuracy.

* Baking. The baking task represents use cases in a commercial kitchen where efficiency are
important. The goal for this task is to pick up a bowl from a table and place it precisely on
an oven rack. Then the robot must close the oven door, which requires precise contact-rich
motion to accomplish.

* Folding Cloth. This task requires the robot to fold a t-shirt. The robot must pick the collar
and fold the whole shirt in half, then pick the right sleeve to do another fold. Success
requires finishing both folds.

* Wiping Board. To showcase SAIL’s robustness we include a contact-rich manipulation
scenario: the wiping-board task. The robot must pick up an eraser and wipe a line on
a whiteboard, all while maintaining forceful contact. Since the demonstration data does
not include any force and contact information, accelerating execution of such a task with
imitation learning is challenging.

* Plate Fruits. This task consists of picking two fruits from a random position on a tray and
placing them on a plate with a specific pattern. This task is challenging because the picking
order is fixed, but the positions can be swapped. Policies for this task were trained with
100 demos.

» Pack Chicken. This real world packing task is challenging because of the variability in
the shape of the deformable (rubber) chicken breasts and the limited size of the container
requiring precise placements. The robot is required to rotate the second chicken breast
to fill the space in the container. This complex motion makes speeding up challenging.
Policies for this task were trained with 100 demos.

* Bimanual Serve. This task involves two robots operating together. While the first is pick-
ing a peach, the second is picking a bowl. Then, they converge to a common point where
the first robot places the peach in the bowl. Then the bowl with the peach inside is served.
This task is very difficult to accelerate because it requires alignment and synchronization
between the two arms. Policies for this task were trained with 75 demos.

E Derivation of Lower Bound &' for Action Interval

We seek to derive a lower bound for the action interval & (i.e., highest speed up) that still allows a
continuous control loop. Recall that HP is the prediction horizon of the policy, and let 8" be the
(constant) lower bound on &; that we aim to find. To find it, we consider the three critical parameters:
(a) Sensing-inference delay 891 = ¢4 —t°, (b) the shortest-possible action execution time HP - §'°,
and (c) the shortest-possible length of the action chunk used for consistency-preserving conditioning
HF€ (Sec. 4.1). To ensure continuous execution, we require the available action sequence to be longer
than the sensing-inference delay plus the conditioning horizon, which gives the lower bound 8™ as

HP. 5lb > adelay —|—Hc5lb
6de1ay (8)

Ib
== 0°> FTIT

We illustrate this relationship in Fig. E.2. Note that we can reduce 8' (i.e., allow higher speedup) by
extending the prediction horizon HP, but this would require accurate action prediction over a longer

17

Robot Control Time (wall clock)

Figure E.2: Handling latencies in the control loop. We illustrate the control loop timeline of
SAIL and how it handles system latency. The green timeline (top) shows the first action sequence
generated at 7°. The sequence spans H§ with the last H steps conditioning the next prediction. The
blue timeline (middle) shows the next action prediction starts while the system continues to execute
the first prediction. The bottom timeline shows the actual robot execution timeline. The system
smoothly transitions from the first sequence (green) to the next (blue) without pausing.

horizon, which is inherently challenging [44]. Hence, in practice, the prediction horizon HP and the
sensing-inference delay §%!% jointly determines the minimum bound on &; and in turn the speedup
factor ¢;:

o (6”/6*,1].)

Moreover, note that ¢, from Sec. 4.3 does not affect this computation, since the lower bound provides
a worst-case guarantee—even though ¢; may increase to slow down execution in certain phases, we
cannot rely on this a priori when computing 8'® for continuous execution.

F Adaptive Speed Modulation

Specifically, we aim to identify critical actions in demonstrations, train the policy to predict both
the actions and their critical action labels, and dynamically the speed up factor ¢ accordingly during
execution.

We propose two techniques to identify critical actions from the demonstration data: measuring
motion complexity and using gripper open/close actions. Each technique returns a binary critical
action flag k; € {0,1} (k, = 1 means that a, is critical), which we use to set the speedup factor ¢;.
Given the binary critical action flag k;, we set the speedup factor as:

e =k - MV 4 (1 —k;) - ™t (10)

where ¢¥1°% € (0,1] is a slower speedup factor used for critical actions and ¢ € (0,1] is used
otherwise. Note that ¢!V > ¢f8 since the reciprocal of the speedup factor determines the speedup.
We set ¢'°% and ¢ to empirically-validated presets for each task. Also note that we lower-bound
¢; in App. E. A policy rollout using this technique of adaptive speed modulation is shown in Fig. F.3.

Identifying Critical Actions via Motion Complexity. Inspired by Automatic Waypoint Extraction
(AWE) [34], we approximate the commanded robot end effector poses in a demonstration with a
set of waypoints connected by linear segments. With a set error budget, this algorithm produces
more waypoints for more complex motion. We then identify fast and slow regions by clustering
the waypoints in 3-D space using DBSCAN [35], which is well-known to identify arbitrarily-sized
clusters better than spherical or centroid-based clustering methods like k-means; it also implicitly
filters out noisy data points that may not represent significant motion changes. To correlate each
time step ¢ with a waypoint, we linearly interpolate between the waypoints in time. Finally, given a
minimum cluster size, we label each time-interpolated waypoint with k; = 1 if the waypoint at time
t is in a cluster and k; = O otherwise.

18

Trajectory
@ Precision Waypoints
® Non-Precision Waypoints’/'

Figure F.3: Policy rollout with adaptive speed modulation . Waypoints (red) are generated by [34]
given the trajectory as input along with an error threshold. Areas of complex motion (blue), are
marked by performing a spatial clustering of the extracted waypoints. Any waypoint outside the
cluster threshold we label as noise. Frame numbers are labeled every 10 steps in green — one can
observe that the clustering has been performed properly by the increased concentration of frame
numbers in clustered areas (the end effector spends more time in these regions).

We describe the algorithm to classify critical actions via motion complexity in Alg. 1.

Identifying Critical Actions via Gripper Events. We observe that motions involving critical ac-
tions often occur during interactions with objects and the environment, which are correlated with
gripper state changes. Thus, we use these gripper events to identify the critical actions. That is, we
set k;, = 1 if the gripper is changing (opening or closing) at # and k;, = 0 otherwise.

G Experiments for Testing Hypothesis for Each Component

G.1 Testing HI: Speeding Up Policy Execution Requires a High-Gain Controller

To illustrate how controller tracking performance affects task execution during runtime, we replay
the demonstrations of the Can task at different speeds and record the success rate for a given con-
troller gain (K),). We compare replaying the commanded poses (x%) and reached poses (x) in demon-
strations. As shown in Fig. G.4, High-gain control combined with reached pose tracking enables
consistent behavior across execution speeds.. Commanded poses lead to overshooting and task
failures when attempting faster execution with higher gains. In contrast, using reached poses as
reference trajectories enables consistently high success rates at increased speeds, provided the con-
troller gain is sufficiently high to ensure accurate tracking.

19

Algorithm 1: Identify Critical Actions via Motion Complexity

Input: Absolute action sequence A = (a;,az,...,ay)

1 Function AWE (A, 7):

2 L return waypoint set W = {wy,...,wy} with wy = (xg,yx,2x), threshold t;
3 Function SpeedLabel (W, &, minPts) :

N S B

=)

if wy is assigned to a cluster then label[k] < 1;
else label[k] « O;

9 W<« AWE (A, 7);
10 label < SpeedLabel (W, €, minPts);
1 s+ Oy;
12 foreach consecutive pair (wy,wy,1) do
13 i + index(wy);

14 J < index(wg41);

return label vector label;

15 | iflabel[k] = 1 and label[k+ 1] = 1 then
L fort < ito jdo

| s[t] < 1

18 for i< 1toN do
19 | d < (a;,sli]);

20 A« (ay,...,dy);

Output: Augmented sequence A = ((ay,s1),

ceey (aN,sN)>

Run DBSCAN on {(x¢, vk, zx) }L, with parameters (€, minPts);
for k < 1to M do

1.0

0.8

0.6

0.4

Success Rate

0.2

0.0

/

J

50

100

150

200

Commanded Poses

250 300

50

Gain (Kp)

—— Reached Poses

100

150

200

250 300

—— demo collection kp

Figure G.4: Demo replay at different speeds and controller gains. We examine the effects of
increasing controller gains and speed for replaying demos in simulation. Left: using commanded
poses performs better when replaying at the original speed (¢ = 1) but using reached poses matches
performance when using high gains. Right: A high-gain controller using reached poses performs
better than one using commanded poses at a higher execution speed.

20

G.2 Testing H2: A High-Gain Controller Requires a Smooth Reference Trajectory

In this experiment, we assess task success rate versus increasing noise scale.

This is important because faster execution can result in out-of-distribution observations that cause a
policy to produce noisier reference trajectories.

High-gain controllers are more sensitive to noisy reference trajectories. As seen in Fig. G.5,
as the noise scale increases, the high-gain controller’s performance deteriorates more rapidly than
the low-gain controller. This reveals an important coupling in our system: while high-gain control
is necessary for accurate tracking at increased speeds, it also amplifies any inconsistencies in the
predicted reference trajectories. This explains the need for trajectory smoothing in our proposed
method.

1.01 . .
== High Gain Controller

~
N /.\ @,
Sy .
e\ Low Gain Controller

0.9

o O
U o

Success Rate

o
>

o
w
)

N\

/.—.\.

©
[N)
)

0.0 011 021 032 042 053 0.63 0.74 0.84 0.95
Noise Scale

Figure G.5: Noise vs high-gain and low-gain controller. We study the effects of increasingly noisy
actions with a high-gain and low-gain controller. Success Rate is averaged over 100 rollouts per
noise scale. At higher noise levels, the success rate when using a high-gain controller drops more
significantly than with a low-gain controller.

G.3 Testing H3: Action Conditioning Improves the Temporal Consistency of Across
Predictions

Since inconsistent action predictions are the main reason for unsmooth reference trajectories and
failure in faster execution, we need to test whether action conditioning can improve temporal con-
sistency and smoothness of generated actions. To quantify this improvement, we conduct rollouts
with and without action conditioning and evaluate smoothness and consistency using the SPARC,
CON, and BID metrics (see App. B for details). We assess these metrics across five tasks at a
speed-up factor of 0.2. As delineated in Table G.1, we found that the action conditioning results in
smoother actions, supported by the higher SPARC metric and lower CON, BID metric compared to
baseline DP.

H EAG Experiments

We first describe Error Adaptive Guidance in Alg. 2.

Next, we validate the key insights that motivated the design of consistency-preserving action predic-
tion generation. Specifically, we test the following hypotheses:

21

Table G.1: Evaluation of smoothness of actions. We compare the smoothness of the generated
actions using our method (c=0.2)

SR 1 [SPARC 1 [CON | [WED |
SAIL 0.97 -2.80 0.091 0348
Lift BID [3] | 0.53 -2.85 0.116 0.395
Baseline | 0.92 -2.83 0.094 0.376
SAIL 0.76 -2.80 0232 0.885
Can BID [8] | 0.62 -2.93 0.325 0.525
Baseline | 0.73 -2.83 0.230 0.930
SAIL 0.87 -2.74 0.107 0916
Square | BID [8] | 0.12 -3.06 0217 0327
Baseline | 0.81 -2.80 0.121 0.957
SAIL 090 -2.50 0.168 0.634
Stack |[BID[8] | 0.92 -2.56 0.641 0.794
Baseline | 0.89 -2.56 0.156 0.739
SAIL 0.63 -2.80 0228 1.192
Mug [BID[S] | 040 -2.62 0.831 0.679
Baseline | 0.59 -2.88 0276 1210

Algorithm 2: Error Adaptive Guidance for Diffusion Policy

Input: Diffusion Policy 7, observations o, future actions a°, current end-effector pose
(Xpos Xori), desired pose (apos, Aori), error thresholds (pos;ep, Orisep)
> Calculate tracking error
1 Ap = Apos — Xpos
2 epos = [|Ap];
3 Rp = R(aori)TR(Xori);
tr(RA) —1
)
> Add action conditioning to observations
5 if epos > pOSiep OF €ori > 0rirep, then o0 < o0 U0;
6 else o +— oUd";
> Generate next set of actions
7 A+ 7(0);
Output: Action sequence A = (ay,ay,...,ay)

s

4 eorj = arccos(

* H-EAGI: Consistency-guiding is beneficial when action condition is aligned with obser-
vation

* H-EAG2: Policy speed-up results in more misalignment between observation and action
condition

* H-EAG3: Tracking error is highly correlated to observation-action misalignment

H.1 Testing H-EAGI: Consistency-guiding is beneficial when action condition is aligned
with observation

We provide an additional study on the key factors influencing our Classifier-Free Guidance (CFG)
approach for preserving action consistency. Namely, we test the hypothesis H-EAGI: consistency
guiding is effective when conditioned on future action condition in unconditional action distribution.

In this experiment, we investigate when consistency guidance is beneficial, specifically when the
future action condition belongs to the unconditional action distribution. We evaluate how well the
generated actions conform to the future action condition under different perturbations.

Our key argument is that consistency guidance is most effective when the future action condition
exists within the unconditional action distribution. To validate this, we conduct the following ex-
periment. Given a fixed observation, we sample 64 action sequences from the unconditional action
distribution by setting the future action condition to a null token. Next, we select one of these sam-
ples as the future action condition and generate 64 action sequences using Classifier-Free Guidance
(CFG) with a weight of 1. The resulting conditional action distribution is shown in the left column
of Fig. H.6.

22

Y Y Y

Figure H.6: Impact of Action Conditioning on Consistency Guidance. We evaluate how our al-
gorithm adheres to conditioning on predicted actions. The action conditioning is shown in yellow;
samples from the unconditional action distribution are shown in grey; and the conditional action
distribution is shown in blue. The left panel shows future action conditions sampled from the un-
conditional distribution. The center panel shows temporally shifted future action conditions, while
the right panel shows spatially perturbed future action conditions. When the action conditioning
(yellow) lies within the unconditional action distribution (grey) in both space and time, the condi-
tional action distribution (blue) is consistent with the action conditioning. However, when the action
conditioning falls outside the unconditional action distribution, the model struggles to align the gen-
erated actions with the given condition. The middle subplot shows time-shifted action conditioning
and the right subplot shows space-shifted action conditioning.

To analyze the effects of perturbations, we apply two modifications. First, we introduce a temporal
shift by delaying the actions, as shown in the center column. Second, we introduce spatial perturba-
tions by adding uniformly sampled noise (range: 0.02) to the selected actions, as shown in the right
column.

Our results indicate that CFG performs best when the future action condition is within the uncondi-
tional action distribution. This suggests that such conditions are likely present in the training dataset,
meaning the model has encountered similar action-observation pairs during training. Consequently,
the model learns to correctly condition on these actions. However, when the future action condition
deviates from the unconditional distribution—potentially due to tracking errors—the model may
struggle to compute an appropriate conditional score.

H.2 Testing H-EAG?2: Policy speed-up results in more misalignment between observation
and action condition

We now examine how policy speed-up influences action conditioning. Specifically, we hypothesize
that increasing policy speed-up results in the action condition deviating further from the uncondi-
tional action distribution, potentially degrading the performance of CFG.

To validate this, we conduct the following experiment. We construct a batch of scenarios con-
sisting of the simulation’s internal state and corresponding observations from expert demonstra-
tions. For each scenario, we reset the simulation to the recorded internal state and use the diffu-
sion policy to generate actions ag.y. Following the notation in Sec. 4.1, we execute ag.ye using
different policy speed-up factors, and obtain the resulting observation oge;. Notably, the pair
(0He11,a° = ape.ye , yr) Tepresents the input to SAIL for CFG-based action generation. Instead of
performing generation, we assess how well the action condition aligns with the observation.

To quantify this alignment, we follow the methodology described in App. H.1, where we sample
N = 64 action sequences from the unconditional action distribution. We then compute in-distribution
scores using standard out-of-distribution (OOD) techniques:

23

1. Kernel Density Estimation (KDE) [45]: We estimate the likelihood of the action condition
under the empirical distribution using a Gaussian kernel, with the bandwidth adaptively
selected via Scott’s rule. Higher values suggest better in-distribution.

2. k-Nearest Neighbors (kNN) Distance [46]: We quantify how close the action condition is
to its nearest neighbors in the dataset. Specifically, it is computed as the average Euclidean
distance to the k = 8 nearest samples. Lower values suggest better in-distribution.

3. Maximum Mean Discrepancy (MMD) [47]: We compute the discrepancy between the
unconditional action distribution and the action-condition (modeled as a Dirac delta) using
a Gaussian kernel with a bandwidth of 0.5. Lower values suggest better in-distribution.

A key aspect of this experiment is that we reset the simulation before each rollout and evaluate only
a single receding horizon step. This design isolates the direct effect of policy speed-up on action
conditioning, avoiding confounding influences such as accumulated errors from prior rollouts. If the
analysis were performed over an entire task execution, it would be difficult to disentangle whether
action condition mismatches stem from speed-up itself or from historical execution deviations.

We compute these metrics across 200 trials and visualize the density estimates in Fig. H.7. Our
results confirm that as the policy speed-up factor increases, action conditions are more likely to fall
outside the unconditional action distribution. This trend suggests that at higher speeds, previously
executed actions become less representative of the policy’s expected next steps, leading to incon-
sistencies in action conditioning, and possible degradation of CFG performance. Hence, we would
require the need for adaptive mechanisms to mitigate conditioning mismatches in high-speed policy
execution.

Speedup factor

1ed uf —— ¢=1.00
1.25 25 c=0.50
\ == ¢=0.33
1.00 3 2.0 ‘\ —— ¢=0.25
>
= 0.75 T 15
c 2 \
(]
0 0.50 \ 1.0
: \
0.25 0.5 \
0.00 0 0.0 —
0 5 0 1 2 0 1 2
KDE Density 1le—9 KNN Distance MMD

Figure H.7: Effect of Policy Speed-up on Out-of-Distribution Action Conditions. This figure
evaluates how increasing the policy speed-up factor leads to mismatches between the action condi-
tion and the unconditional action distribution. We assess this by computing how well action condi-
tions derived from previously executed actions align with the unconditional action distribution given
the current observation. We use three independent OOD detection metrics: Kernel Density Esti-
mation (Left), k-Nearest Neighbor Distance (Middle), and Maximum Mean Discrepancy (Right).
Across different metrics, we observe that as the policy speed-up factor increases, the action condi-
tion increasingly falls into the OOD region, exhibiting a long-tail distribution in high-OOD regions.
Comparing normal-speed policies (blue) and highly accelerated policies (red) reveals that slower
policies maintain better alignment between action conditions and current observations.

H.3 Testing H-EAG3: Tracking error is highly correlated to observation-action
misalignment

Previous results indicate that action conditioning is most effective when the action condition is well-
aligned with the current observation. However, as policy speed-up increases, this alignment deteri-
orates, reducing the benefits of conditioning. To effectively determine when action conditioning is
beneficial, we need a reliable and efficient proxy for measuring misalignment.

24

A natural approach is to use the out-of-distribution (OOD) metrics introduced in App. H.2. However,
these methods are computationally expensive and impractical for real-time deployment. Instead, we
propose tracking error as a computationally efficient alternative.

Defining Tracking Error. Given the current robot state x and the desired state indicated by the
action a, we define the position tracking error and orientation tracking error as follows:

€pos = Hapos _xposH
tr(Rp) —1

))7 R = R(aori)TR(xari)

Cori = cosfl(
where x,0; and ap,; denote the real and desired end-effector positions, x,,; and a,,; represents the
real and desired end-effector orientations. R(-) maps any oreintation representation to an SO(3)
rotation matrix, and tr(-) denotes the trace of a matrix.

Analyzing Correlation with OOD Scores. To assess whether tracking error serves as a reliable
indicator of action condition misalignment, we compare tracking error values against the action
condition’s in-distribution scores computed using the metrics defined in App. H.2. Specifically, we
analyze the correlation separately for position and orientation tracking errors.

Fig. H.8 visualize these relationships. The results indicate a clear trend: as tracking error increases,
the action condition is more likely to fall outside the unconditional action distribution. This suggests
that tracking error is a useful proxy for detecting when action conditioning might degrade CFG
performance.

Impact of Adaptive CFG on Policy Performance. We evaluate whether adaptively applying
CFG based on tracking error improves policy performance, particularly success rate and trajectory
smoothness. To study the effect of different tracking error thresholds, we vary the position tracking
error threshold across 0.01, 0.02, and 0.04 and evaluate the Square task with a policy speed-up factor
of ¢ =0.33. Each policy is tested over 50 scenarios, with three evaluations per scenario.

CFG is applied only when the tracking error is below the specified threshold, and we compare this
approach to a baseline without guidance. Performance is measured by success rate and smoothness
using the SPARC metric. The proportion of inference steps where CFG was applied—referred to as
the guided inference ratio—was 0.27, 0.47, and 0.78 for the three thresholds, respectively.

The results show that indiscriminate application of CFG (high guidance ratio) reduces success rate,
likely due to misalignment between observation and action condition. Conversely, selectively ap-
plying CFG when the tracking error is low improves both success rate and smoothness. Fig. H.9
illustrates that a moderate tracking error threshold leads to better overall performance, while higher
thresholds degrade success rates.

One limitation is that the optimal tracking error threshold varies by task, as tasks with more com-
plex reference trajectories naturally exhibit higher tracking errors. The values reported here were
determined through hyperparameter tuning for the Square task. Nonetheless, these findings confirm
that tracking error provides a useful heuristic for determining when to apply CFG, leading to more
reliable policy execution.

I Aggregating actions

We describe the algorithm for aggregating actions, which is one of our baselines, in Alg. 3.

J Hyperparameters

The hyperparameters for our Policy backbone are listed in Table J.2. The parameters for the consis-
tency guiding is listed in Table J.3 and the controller parameters in simulation are listed in Table J.4.
The controller parameters for the real robot are listed in Table J.5.

25

0.12 0.12
. 0.10 0.10
9 e
5 0.08 - 0.08
c
S 0.06 0.06
=
[2]

00'04 0.04
o
0.02 0.02
0.00 0.00
0.00035 0.00036

0.6 0.6
5 0.5 .
= oy
w 0.4 ®e’e o
c . © . °
o o ®
= 03 © 0 e
- 00,

S - o. "o
c
g %2 ° .5
= e o
O o01{"° *
0.0
0.0001 0.0002 0.0003

KDE Density KNN Distance

Figure H.8: Correlation between Tracking Error and Out-of-Distribution Action Condition.
This figure illustrates the relationship between the tracking error and out-of-distribution (OOD)
scores of action-conditions, computed using KDE Density (left), KNN distance (center), and MMD
(right). The top row shows the correlation between the position tracking error and OOD scores in the
position dimension. The bottom row shows the correlation between orientation tracking error and
OOD scores in the orientation dimension. The result indicates that large tracking error corresponds
to higher OOD scores, suggesting that tracking error can serve as a proxy for detecting misaligned
action conditions.

0825

= W

0800 -310
0775

315
0750

320
0725

325
0700

0675 -330 é

Baseline CFG CFG CFG Baseline CFG CFG CFG
(€pos = 0.01) (epos = 0.02) (epos = 0.04) (epos = 0.01) (epos = 0.02) (epos = 0.04)

Success Rate
SPARC

Figure H.9: Effect of Tracking Error Threshold on Policy Performance. This figure shows how
different tracking error thresholds influence policy performance, measured by success rate (right)
and trajectory smoothness (left). Each method is evaluated over 50 scenarios, repeated across three
trials. The box plots display the maximum, mean, and minimum values per evaluation. The highest
tracking error threshold (0.04) leads to a decline in success rate, while a more conservative threshold
improves overall performance.

26

Algorithm 3: Aggregate Actions (baseline)

Input: Sequence of delta Cartesian actions A = {ay,...,ar)
1 AggActions + []
2 curr <+ aj
3 for a € A[2:] do

a | if ||curr|| > 0.05 cm or dot(a, curr) < 0.25 then
5 append curr to AggActions

6 curr+a

7 else

8 | curr < curr+a

9 append curr to AggActions
Output: Aggregated action sequence AggActions

—— Unconditional Action Distribution
Action Condition

Selected Action

I L G

(a) Successful rollout trajectory with action- (b) Successful rollout trajectory without
conditioning. action-conditioning.

Figure J.10: Effect of Action-Conditioning on Smoothness of End-Effector Trajectories. This
figure illustrates end-effector trajectories, of a policy rollout on the square task, comparing scenar-
ios with action-conditioning (Fig. J.10a, blue trajectory) and without action-conditioning (Fig. J.10b,
red trajectory). Snapshots depicting the initial and final states of the square task are provided for
each scenario. The guiding action (green line) and sampled unconditional actions (grey lines) are de-
picted, alongside the selected final action (solid colored lines). With action-conditioning, the chosen
action closely aligns with the guided prediction (green), leading to smoother, goal-directed trajecto-
ries. Without action-conditioning, the final actions deviate significantly from the guide, resulting in
less consistent trajectories. We further provide the snapshots of the initial state and the final state of
the square task.

K Detailed Ablation and SAIL with ACT

A more detailed ablation of our method is provided in Table K.6. Furthermore, we present results
of SAIL with ACT [2], with the only difference being the use of temporal ensembling as opposed to
CFG for maintaining consistency between consecutive predictions.

27

Table J.2: Key Parameters of Policy Architecture

Parameter [Value
General Settings

Algorithm diffusion_policy
Sequence Length 32
Frame Stack 4

Batch Size 128
Num. Epochs 2000
Horizon Settings

Observation Horizon 4
Action Horizon 32
Prediction Horizon 32

UNet & Diffusion Settings

UNet Enabled True
Diffusion Step Embed Dim 256
UNet Down-dimensions 256, 512, 1024
Kernel Size 5

EMA & DDIM

EMA Enabled True (power: 0.75)
DDIM Enabled True
Train Timesteps 100
Inference Timesteps 10

Beta Schedule

squaredcos_cap_v2

Future Action Conditioning

Enabled True

Horizon 4

Pcond 0.3

Weight 1.0

Null Token Zero

RGB Encoder Settings

Vision Encoder ResNet18

Pooling kp=32,temp = 1.0
Randomizer CropRandomizer (116x116, 1 crop)

Table J.3: Optimal Hyperparameter for Consistency Guiding

Task CFG weight | TEB (Ori.) | TEB (Pos.)
Can 0 0.05 0.02
Lift 1 0.05 0.02
Square 1 0.05 0.02
Mug Cleanup 1 0.05 0.02
Stack 0 0.03 0.01

Table J.4: Controller and SAIL parameters for each simulated task

lift can square stack mug cleanup
K, 3000 3000 1000 3000 2000
damping 0.5 0.5 1 5 5
slowdownc | 0.2 0.5 1.0 0.2 0.5

28

Table J.5: Controller Gains for Demo Collection and SAIL Execution on Real Robot

Demo Collection | SAIL Execution
Ky” 150 300
KP” 24.5 34.6
K ;‘” 250 400
K" 31.6 40.0

Table K.6: Results of Ablation in Sim

DP[1] SAIL -HG -AS -C Commanded Poses
SRt | 1.00 1.00 0.67 0.97 0.98 0.89
Lift TPRT| 046 1.68 0.25 1.57 1.58 1.8
ATR} | 223 0.61 3.39 0.63 0.63 0.52
SODT| 1.08 398 0.71 3.85 3.84 4.63
SRT | 097 092 0.83 0.95 0.89 0.63
Can TPRT| 0.18 0.51 0.18 0.60 0.50 0.37
ATR] | 552 1.81 436 1.61 1.79 1.65
SODT| 1.05 320 1.33 3.60 3.23 3.52
SRT | 0.83 0.86 0.59 0.64 0.79 0.31
TPRT| 0.10 0.13 0.06 0.25 0.13 0.04
Square
ATR)| 7.56 641 8.8 2.50 5.78 4.25
SODT| 099 1.18 0.86 3.01 1.31 1.77
SRT | 1.00 098 0.9 0.94 0.95 0.82
Stack TPRT| 0.19 0.66 0.15 0.61 0.62 0.43
ATR)| 550 156 6.6 1.71 1.56 2.81
SODT| 098 347 0.86 3.15 3.46 1.92
SRT | 0.68 0.72 0.53 0.44 0.68 0.54
Mug TPRT| 0.03 0.08 0.01 0.07 0.08 0.03
ATR] | 17.44 8.09 18.24 5.37 8.15 17.38
SODT| 097 209 092 3.14 2.07 0.92
Table K.7: ACT experiments with and without SAIL
Lift Can Square Stack
SRT TPRT ATR| SOD?|SRT TPRT ATR| SOD?1|SRT TPRT ATR] SOD?1|SRT TPRT ATR] SOD?t
ACT [1.00 0.40 2.69 0.90 |0.77 0.12 4.04 0.96 |0.51 0.04 8.21 0.92(0.73 0.11 6.18 0.87
SAIL|0.94 1.50 0.65 3.71 |0.56 0.25 2.12 2.72 (043 0.11 3.22 2.34 |0.68 0.28 3.14 1.72

29

	Introduction
	Related Work
	Preliminaries, Challenges, and Problem Statement
	Speed Adaptation for Imitation Learning (SAIL)
	Consistent Action Prediction via Error-Adaptive Guidance
	Reducing Controller Shift via Controller-invariant Action Target
	Adaptive-Speed Policy Execution
	Maintaining Real-Time Control at High Speed Under System Latency

	Evaluations
	Simulation Evaluation: SAIL Achieves High Task Throughput
	Real-World Evaluation: SAIL Achieves High Throughput on Hardware

	Conclusion
	Limitations
	Table of Contents
	Evaluation Metrics
	Simulation Experiment Details
	Robot Control and Dynamics Considerations
	Simulator and Data
	Compute

	Real-World Evaluation Setup
	Franka Robot
	UR5 Robot
	Task Descriptions

	Derivation of Lower Bound dtbound for Action Interval
	Adaptive Speed Modulation
	Experiments for Testing Hypothesis for Each Component
	Testing H1: Speeding Up Policy Execution Requires a High-Gain Controller
	Testing H2: A High-Gain Controller Requires a Smooth Reference Trajectory
	Testing H3: Action Conditioning Improves the Temporal Consistency of Across Predictions

	EAG Experiments
	Testing H-EAG1: Consistency-guiding is beneficial when action condition is aligned with observation
	Testing H-EAG2: Policy speed-up results in more misalignment between observation and action condition
	Testing H-EAG3: Tracking error is highly correlated to observation-action misalignment

	Aggregating actions
	Hyperparameters
	Detailed Ablation and SAIL with ACT

